Interface structure and reactivity of water-oxidation Ru-polyoxometalate catalysts on functionalized graphene electrodes.

نویسندگان

  • Changru Ma
  • Simone Piccinin
  • Stefano Fabris
چکیده

We combine classical empirical potentials and density functional theory (DFT) calculations to characterize the catalyst/electrode interface of a promising device for artificial photosynthesis. This system consists of inorganic Ru-polyoxometalate (Ru-POM) molecules that are supported by a graphitic substrate functionalized with organic dendrimers. The experimental atomic-scale characterization of the active interface under working conditions is hampered by the complexity of its structure, composition, as well as by the presence of the electrolyte or solvent. We provide a detailed atomistic model of the electrode/catalyst interface and show that the catalyst anchoring is remarkably dependent on water solvation. A tight host-guest binding geometry between the surface dendrimers and the Ru-POM catalyst is predicted under vacuum conditions. The solvent destabilizes this geometry, leads to unfolding of the dendrimers and to their flattening on the graphitic surface. The Ru-POM catalyst binds to this organic interlayer through a stable electrostatic link between one POM termination and the charged terminations of the dendrimers. The calculated dynamics and mobility of the Ru-POM catalyst at the electrode surface are in fair agreement with the available high-resolution transmission electron microscopy data. In addition, we demonstrate that the high thermodynamic water-oxidation efficiency of the Ru-POM catalyst is not affected by the binding to the electrode, thus rationalizing the similar electrochemical performances measured for homogeneous and heterogeneous Ru-POM catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic motion of Ru-polyoxometalate ions (POMs) on functionalized few-layer graphene.

Polyoxometalates (POMs) are a well-known class of discrete early transition metal-oxide nanoclusters. This class of molecular metal oxides is unmatched not only in terms of structural diversity but also in reactivity and relevance to analytical chemistry, catalysis, medicine, and nanoscience. [ 1–3 ] The integration of POMs into functional architectures and devices requires the development of m...

متن کامل

Modeling Ru-based Molecular Catalysts for Water Oxidation

The discovery of solar-driven water splitting catalysts with high activity and stability has been instrumental for storing solar energy to chemical fuels that can satisfy the increasing demand of sustainable energy. Ru-based catalysts continue to serve as the springboard for the development of solar energy conversion into chemical fuels. It is clear that the functionality of these catalysts is ...

متن کامل

Rigid- and polarizable-ion potentials for modeling Ru-polyoxometalate catalysts for water oxidation.

This work assesses the predictive power and capabilities of classical interatomic potentials for describing the atomistic structure of a fully inorganic water-oxidation catalyst in the gas phase and in solution. We address a Ru-polyoxometalate molecule (Ru-POM) that is presently one of the most promising catalysts for water oxidation due to its efficiency and stability under reaction conditions...

متن کامل

Water Oxidation by Ru-Polyoxometalate Catalysts: Overpotential Dependency on the Number and Charge of the Metal Centers

Water oxidation is efficiently catalyzed by several Ru-based polyoxometalate (POM) molecular catalysts differing in the number, local atomistic environment and oxidation state of the Ru sites. We employ density functional theory calculations to rationalize the dependency of the reaction overpotential on the main structural and electronic molecular properties. In particular, we compare the therm...

متن کامل

Preparation and performance analysis of γ-Al2O3 supported Cu-Ru bimetallic catalysts for the selective Wet Air Oxidation of Aqueous Ammonia to Nitrogen.

Series of Copper Ruthenium (Cu-Ru) bimetallic catalysts supported on γ-Al2O3 with different metal loading are prepared and investigated for catalytic wet air oxidation of ammonia to nitrogen. The ammonia decomposition activity was studied at three different temperatures i.e. 150oC, 200oC, and 230 oC and it is found that catalytic activity increases with the increase in temperature along with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2014